这篇文章给大家聊聊关于奇变偶不变符号看象限怎么理解,以及奇变偶不变符号看象限是几年级学的对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。
一、奇变偶不变,符号看象限是什么意思
奇变偶不变,符号看象限是诱导公式的口诀。
奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”。
当奇变偶不变,先暂不考虑正负号的情况:
1、当k为奇数时,终边上的点P'(±y,±x)与原终边上的点P(x,y)横纵坐标正好相反,所以对应的三角比要变;
2、当k为偶数时,终边上的点P'(±x,±y)与原终边上的点P(x,y)横纵坐标没有变化,所以对应的三角比不变;
符号看象限:使用这句口诀时,都是假设原角是锐角,因为锐角的任意三角比都是正的,这样判断正负号的时候,就不用考虑三角比本身的正负情况。
二、奇变偶不变符号看象限是什么意思
1、奇变偶不变,是三角函数中定号法则中总结出来的两句话中的一句。全句为“奇变偶不变,符号看象限”。具体理解如下:
2、奇变偶不变,是指,角前面的度数是90度(π/2)的倍数。如果是偶数,则函数名称不变,如果是奇数,则要变成它的余函数(正、余弦互相变,正、余切互相变,正、余割互相变)。如图所示(其中a看做锐角),先不考虑正负问题:
3、三角函数,是基本初等函数之一,以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
4、常见的三角函数包括正弦函数、余弦函数和正切函数。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。
三、奇变偶不变,符号看象限,是什么原理,及公式
1.“奇变偶不变,符号看象限”是三角函数里关于诱导公式的一句口诀。
sin(90°-α)= cosα sin(90°+α)= cosα
cos(90°-α)= sinα cos(90°+α)=- sinα
sin(270°-α)=- cosα sin(270°+α)=- cosα
cos(270°-α)=- sinα cos(270°+α)= sinα
sin(180°-α)= sinα sin(180°+α)=- sinα
cos(180°-α)=- cosα cos(180°+α)=- cosα
sin(360°-α)=- sinα sin(360°+α)= sinα
cos(360°-α)= cosα cos(360°+α)= cosα
“奇变偶不变”的意思是:例如cos(270°-α)=- sinα中, 270°是90°的3(奇数)倍所以cos变为sin,即奇变;又sin(180°+α)=- sinα中, 180°是90°的2(偶数)倍所以sin还是sin,即偶不变。
“符号看象限”的意思是:通过公式左边的角度所落的象限决定公式右边是正还是是负。例如cos(270°-α)=- sinα中,视α为锐角,270°-α是第三象限角,第三象限角的余弦为负,所以等式右边为负号。又如sin(180°+α)=- sinα中,视α为锐角,180°+α是第三象限角,第三象限角的正弦为负,所以等式右边有负号。注意:公式中α可以不是锐角,只是为了记住公式,视α为锐角。
另外这个口诀还能记住正切、余切、正割、余割的诱导公式,推导过程与上面的正弦、余弦相同。
OK,本文到此结束,希望对大家有所帮助。